Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Environ Manage ; 328: 116907, 2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2242506

ABSTRACT

Lockdowns enforced amid the pandemic facilitated the evaluation of the impact of emission reductions on air quality and the production regime of O3 under NOx reduction. Analysis of space-time variation of various pollutants (PM10, PM2.5, NOx, CO, O3 and VOC or TNMHC) through the lockdown phases at eight typical stations (Urban/Metro, Rural/high vegetation and coastal) is carried out. It reveals how the major pollutant (PM10 or PM2.5 or O3, or CO) differs from station to station as lockdowns progress depending on geography, land-use pattern and efficacy of lockdown implementation. Among the stations analyzed, Delhi (Chandnichowk), the most polluted (PM10 = 203 µgm-3; O3 = 17.4 ppbv) in pre-lockdown, experienced maximum reduction during the first phase of lockdown in PM2.5 (-47%), NO2 (-40%), CO (-37%) while O3 remained almost the same (2% reduction) to pre-lockdown levels. The least polluted Mahabaleshwar (PM10 = 45 µgm-3; O3 = 54 ppbv) witnessed relatively less reduction in PM2.5 (-2.9%), NO2 (-4.7%), CO (-49%) while O3 increased by 36% to pre-lockdown levels. In rural stations with lots of greenery, O3 is the major pollutant attributed to biogenic VOC emissions from vegetation besides lower NO levels. In other stations, PM2.5 or PM10 is the primary pollutant. At Chennai, Jabalpur, Mahabaleshwar and Goa, the deciding factor of Air Quality Index (AQI) remained unchanged, with reduced values. Particulate matter, PM10 decided AQI for three stations (dust as control component), and PM2.5 decided the same for two but within acceptable limits for stations. Improvement of AQI through control of dust would prove beneficial for Chennai and Patiala; anthropogenic emission control would work for Chandani chowk, Goa and Patiala; emission control of CO is required for Mahabaleshwar and Thiruvanathapuram. Under low VOC/NOx ratio conditions, O3 varies with the ratio, NO/NO2, with a negative (positive) slope indicating VOC-sensitive (NOx-sensitive) regime. Peak O3 isopleths as a function of NOx and VOC depicting distinct patterns suggest that O3 variation is entirely non-linear for a given NOx or VOC.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Environmental Pollutants , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Air Pollutants/analysis , Environmental Pollutants/analysis , Nitrogen Dioxide/analysis , Environmental Monitoring , Communicable Disease Control , India , Air Pollution/prevention & control , Air Pollution/analysis , Particulate Matter/analysis , Dust/analysis
SELECTION OF CITATIONS
SEARCH DETAIL